We are given the differential equation:
\[
(D^2 + 4)y = \cos 3x + \sin 2x
\]
We need to find the particular integral (P.I.).
Break into two parts:
\[
\text{P.I.} = \frac{1}{D^2 + 4}(\cos 3x + \sin 2x)
= \frac{1}{D^2 + 4}(\cos 3x) + \frac{1}{D^2 + 4}(\sin 2x)
\]
Part 1: \( \frac{1}{D^2 + 4}(\cos 3x) \)
Since \( D^2(\cos 3x) = -9 \cos 3x \), the operator becomes:
\[
= \frac{1}{-9 + 4} \cos 3x = \frac{1}{-5} \cos 3x = -\frac{1}{5} \cos 3x
\]
Part 2: \( \frac{1}{D^2 + 4}(\sin 2x) \)
Here, \( D^2(\sin 2x) = -4 \sin 2x \). Hence,
\[
D^2 + 4 = 0 \quad \Rightarrow \text{Resonance Case (failure)}
\]
So we multiply by \( x \) and differentiate:
\[
\frac{1}{(D^2 + 4)}(\sin 2x)
= x \cdot \frac{1}{2D}(\sin 2x)
\]
Now \( D(\sin 2x) = 2 \cos 2x \), so:
\[
\frac{1}{2D}(\sin 2x) = \frac{1}{2 \cdot 2 \cos 2x} = \frac{1}{4} \cos 2x
\Rightarrow x \cdot \frac{1}{4} \cos 2x = \frac{x}{4} \cos 2x
\]
Final Result:
\[
\text{P.I.} = -\frac{1}{5} \cos 3x + \frac{x}{4} \cos 2x
= \frac{-4 \cos 3x + 5x \cos 2x}{20}
= {\frac{-1}{20}(4 \cos 3x + 5x \cos 2x)}
\]