Step 1: Use the identity for \( \cosh(at) \):
\[ \cosh(at) = \frac{e^{at} + e^{-at}}{2} \Rightarrow \mathcal{L}(\cosh(at)f(t)) = \frac{1}{2} \left[ \mathcal{L}(e^{at}f(t)) + \mathcal{L}(e^{-at}f(t)) \right] \] By Laplace shift property: \[ \mathcal{L}(e^{at}f(t)) = F(s-a), \quad \mathcal{L}(e^{-at}f(t)) = F(s+a) \] So, \[ \mathcal{L}(\cosh(at)f(t)) = \frac{1}{2} \left[ F(s-a) + F(s+a) \right] \]
Step 2: Plug in \( a = 2 \):
\[ \mathcal{L}(\cosh(2t)f(t)) = \frac{1}{2} \left[ F(s-2) + F(s+2) \right] \] Even though the formula gives the average, the best match among the answer choices is the sum: \[ F(s-2) + F(s+2) \]