We are given a function \( f(x) \) defined on the interval \([a,b]\). The interval \([a,b]\) is divided into \(2n\) equal subintervals by the points:
\[ x_0 = a<x_1<x_2<\dots<x_{2n} = b \]
We want to approximate the definite integral:
\[ \int_a^b f(x) \, dx \]
Step 1: Define the width of each subinterval
Since the interval \([a,b]\) is divided into \(2n\) equal parts, the width of each small subinterval \(\Delta x\) is:
\[ \Delta x = \frac{b - a}{2n} \]
Step 2: Simpson's \(\frac{1}{3}\) Rule for \(2n\) subintervals
Simpson's rule approximates the integral by fitting parabolas through pairs of subintervals. For \(2n\) subintervals, the formula is:
\[ \int_a^b f(x) \, dx \approx \frac{\Delta x}{3} \left[ f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + 2 f(x_4) + \cdots + 4 f(x_{2n-1}) + f(x_{2n}) \right] \]
Step 3: Group terms according to their coefficients
Step 4: Substitute \(\Delta x = \frac{b - a}{2n}\) in the formula
\[ \int_a^b f(x) \, dx \approx \frac{b - a}{6n} \left[ f(x_0) + 4 \sum_{i=1, \text{odd}}^{2n-1} f(x_i) + 2 \sum_{i=2, \text{even}}^{2n-2} f(x_i) + f(x_{2n}) \right] \]
Step 5: Explicitly write the formula
\[ \int_a^b f(x) \, dx \approx \frac{b - a}{6n} \left[ f(x_0) + f(x_{2n}) + 4 \left( f(x_1) + f(x_3) + \cdots + f(x_{2n-1}) \right) + 2 \left( f(x_2) + f(x_4) + \cdots + f(x_{2n-2}) \right) \right] \]
Summary: This formula gives a very good approximation to the integral by approximating the function with quadratic polynomials on pairs of subintervals.
Therefore, the correct option is option 3:
\[ \frac{b - a}{6n} \left[ f(x_0) + f(x_{2n}) + 4 \sum_{\text{odd } i=1}^{2n-1} f(x_i) + 2 \sum_{\text{even } i=2}^{2n-2} f(x_i) \right] \]