Let $f(x) = \begin{cases} h(x), & 0<x<C \\-h(-x), & -C<x<0 \end{cases}$ and $f(x+2C)=f(x) \; \forall x \in \mathbb{R}$. If the Fourier series of $f(x) = \sum_{n=0}^\infty \left(a_n \cos\frac{n\pi x}{C} + b_n \sin\frac{n\pi x}{C}\right)$ then $\sum_{n=0}^\infty a_n b_n =$
Given a function \( f(x) \) defined as:
\[ f(x) = \begin{cases} h(x), & 0<x<C \\ -h(-x), & -C<x<0 \end{cases} \]
and it satisfies the periodic condition \( f(x + 2C) = f(x) \) for all real \( x \).
The Fourier series expansion of \( f(x) \) is given by:
\[ f(x) = \sum_{n=0}^\infty \left(a_n \cos \frac{n \pi x}{C} + b_n \sin \frac{n \pi x}{C} \right) \]
We are asked to find the value of the series:
\[ \sum_{n=1}^\infty a_n b_n \]
Step 1: Properties of \( f(x) \)
Step 2: Since \( a_n = 0 \) for \( n \geq 1 \), the product \( a_n b_n = 0 \) for all \( n \geq 1 \).
Step 3: Therefore,
\[ \sum_{n=1}^\infty a_n b_n = 0 \]
Step 4: Checking the options, the one that matches this is:
\[ \int_{-C}^C f(x) \cos \frac{n \pi x}{C} \, dx \]
because this integral is zero for an odd function multiplied by an even function (cosine), and the sum of the product \( a_n b_n \) also evaluates to zero.
Hence, the correct answer is option 2.
Consider a system represented by the block diagram shown below. Which of the following signal flow graphs represent(s) this system? Choose the correct option(s).