Apply Green’s Theorem
Green’s Theorem converts a double integral into a line integral: \[ \iint_E \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx\,dy = \oint_C (M\,dx + N\,dy) \] To compute \( \iint_E dx\,dy \), choose a vector field such that: \[ \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1 \] Select: \[ M = -\frac{y}{2}, \quad N = \frac{x}{2} \quad \Rightarrow \quad \frac{\partial N}{\partial x} = \frac{1}{2}, \quad \frac{\partial M}{\partial y} = -\frac{1}{2} \quad \Rightarrow \quad 1 \] Therefore, \[ \iint_E dx\,dy = \oint_C \left( -\frac{y}{2} dx + \frac{x}{2} dy \right) = \oint_C \left( -\frac{y}{2} i + \frac{x}{2} j \right) \cdot d\vec{R} \]