Given:
\[ \phi(x,y,z) = \left( x^2 + y^2 + z^2 \right)^{\frac{n}{2}} \quad \text{and} \quad f(x,y,z) = (xyz)^{-\frac{n}{2}} \]
We need to evaluate:
\[ \operatorname{div} \left( \operatorname{Curl}(\nabla \phi) \right) + \left( \operatorname{Curl}(\nabla f) \right) \cdot \nabla \phi \]
Step 1: Use vector calculus identities
Step 2: Summing both terms
\[ \operatorname{div}(\operatorname{Curl}(\nabla \phi)) + (\operatorname{Curl}(\nabla f)) \cdot \nabla \phi = 0 + 0 = 0 \]
Answer: The value of the given expression is 0.
This corresponds to option 3.
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: