We are given the function:
\[
f(t) = \frac{e^{-at} - e^{-bt}}{t}
\]
This is a standard Laplace transform result.
Formula:
\[
\mathcal{L}\left\{ \frac{e^{-at} - e^{-bt}}{t} \right\}
= \log\left( \frac{s + b}{s + a} \right), \quad \text{for } s > -\min(a,b)
\]
This result comes from the integral identity:
\[
\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} e^{-st} dt = \log\left( \frac{s + b}{s + a} \right)
\]
Thus, the Laplace transform directly yields:
\[
{ \log\left( \frac{s + b}{s + a} \right) }
\]