We are given:
\[
u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)
\]
Let us compute:
\[
x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}
\]
We use the chain rule.
First, define:
\[
u_1 = \sin^{-1}\left(\frac{x}{y}\right), \quad u_2 = \tan^{-1}\left(\frac{y}{x}\right)
\]
So,
\[
\frac{\partial u_1}{\partial x} = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^2}} \cdot \frac{1}{y} = \frac{1}{\sqrt{y^2 - x^2}}, \quad \frac{\partial u_1}{\partial y} = \frac{-x}{y^2 \sqrt{1 - \left(\frac{x}{y}\right)^2}} = \frac{-x}{y \sqrt{y^2 - x^2}}
\]
\[
\frac{\partial u_2}{\partial x} = \frac{-y}{x^2 + y^2}, \quad \frac{\partial u_2}{\partial y} = \frac{x}{x^2 + y^2}
\]
Now summing the total derivatives:
\[
\frac{\partial u}{\partial x} = \frac{1}{\sqrt{y^2 - x^2}} - \frac{y}{x^2 + y^2}
\]
\[
\frac{\partial u}{\partial y} = \frac{-x}{y \sqrt{y^2 - x^2}} + \frac{x}{x^2 + y^2}
\]
Now compute:
\[
x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}
= x\left(\frac{1}{\sqrt{y^2 - x^2}} - \frac{y}{x^2 + y^2}\right) + y\left(\frac{-x}{y \sqrt{y^2 - x^2}} + \frac{x}{x^2 + y^2} \right)
\]
Simplifying:
\[
= \frac{x}{\sqrt{y^2 - x^2}} - \frac{xy}{x^2 + y^2} - \frac{x}{\sqrt{y^2 - x^2}} + \frac{xy}{x^2 + y^2} = 0
\]
Hence,
\[
x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0
\]