A probability mass function (PMF) must satisfy the condition:
\[
\sum P(X = x_i) = 1
\]
Let us examine each option:
Option A:
\[
P(X = x) = \frac{1}{6} \text{ for } x = 1,2,3,4,5,6 \Rightarrow \sum P(X = x) = 6 \times \frac{1}{6} = 1 \quad \text{(Valid)}
\]
Option B:
\[
P(X = x) = \frac{1}{3} \text{ for } x = 1,2,3 \Rightarrow \sum P(X = x) = 3 \times \frac{1}{3} = 1 \quad \text{(Valid)}
\]
Option C:
\[
P(X = x) = \frac{1}{2} \text{ for } x = 1,2 \Rightarrow \sum P(X = x) = 2 \times \frac{1}{2} = 1 \quad \text{(Valid)}
\]
Option D:
\[
P(X = x) = \frac{1}{4} \text{ for } x = 1,2 \Rightarrow \sum P(X = x) = 2 \times \frac{1}{4} = \frac{1}{2} \neq 1 \quad \text{(Invalid)}
\]
Hence, option (D) cannot be a valid PMF.