Let $u(x,t)$ be the solution of the initial boundary value problem:
\[
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0,
0<x<\pi, \; t>0,
\]
\[
u(x,0) = 2 \sin\!\left(\tfrac{3x}{2}\right)\cos\!\left(\tfrac{x}{2}\right),
0<x<\pi,
\]
\[
u(0,t) = u(\pi,t) = 0, t>0.
\]
Then the value of $\lim_{t\to\infty u\!\left(\tfrac{3\pi}{4},t\right)$ is equal to (rounded off to two decimal places).}