Step 1: Finding coordinates of points.
The general point on line \(L\) is:
\[
Q(1 + \mu, -1 - \mu, 2 + 2\mu)
\]
The given point \(P = (1, 2, 2)\).
Step 2: Finding perpendicular condition.
We use the condition that the line joining \(P\) and \(Q\) must be perpendicular to the direction vector of the line:
\[
\mathbf{AP} \cdot \mathbf{d} = 0
\]
Where \( \mathbf{AP} = (1 + \mu - 1, -1 - \mu - 2, 2 + 2\mu - 2) = (\mu, -3 - \mu, 2\mu) \)
And direction vector \( \mathbf{d} = (1, -1, 2) \)
Dot product condition:
\[
\mu + (-3 - \mu)(-1) + 2\mu \times 2 = 0
\]
Simplifying:
\[
\mu + 3 + \mu + 4\mu = 0
\]
\[
6\mu = -3 \implies \mu = -\frac{1}{2}
\]
Substituting \( \mu = -\frac{1}{2} \) in the parametric form:
\[
Q = \left(1 - \frac{1}{2}, -1 + \frac{1}{2}, 2 - 1\right) = \left( \frac{1}{2}, -\frac{1}{2}, 1 \right)
\]
Step 3: Finding distance \( PQ \)
\[
PQ = \sqrt{ \left( 1 - \frac{1}{2} \right)^2 + \left( 2 - \left(-\frac{1}{2}\right) \right)^2 + (2 - 1)^2 }
\]
\[
PQ = \sqrt{ \left( \frac{1}{2} \right)^2 + \left( \frac{5}{2} \right)^2 + (1)^2 }
\]
\[
PQ = \sqrt{ \frac{1}{4} + \frac{25}{4} + 1 } = \sqrt{ \frac{1 + 25 + 4}{4} }
\]
\[
PQ = \sqrt{\frac{30}{4}} = \frac{\sqrt{30}}{2}
\]
Step 4: Final Calculation
\[
2(PQ)^2 = 2 \times \left( \frac{30}{4} \right) = 2 \times 7.5 = 27
\]