Step 1: Given information.
Point: \( A(1, 2, 2) \)
Line \( L_1: \frac{x - 1}{1} = \frac{y + 1}{-1} = \frac{z - 2}{2} \)
Line \( L_2: \mathbf{r} = (-\hat{i} + \hat{j} - 2\hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \).
We need to find the foot of the perpendicular \( P \) from point \( A \) to line \( L_1 \) and the point of intersection \( Q \) of \( L_1 \) and \( L_2 \), then evaluate \( 2(PQ)^2 \).
Step 2: Equation of the first line \( L_1 \).
Let the parameter of \( L_1 \) be \( t \). Then the coordinates of any point on \( L_1 \) are:
\[
(x, y, z) = (1 + t, -1 - t, 2 + 2t)
\]
The direction ratios of \( L_1 \) are \( (1, -1, 2) \).
Step 3: Find the foot of the perpendicular \( P \).
Let \( P(1 + t, -1 - t, 2 + 2t) \) be the foot of the perpendicular from \( A(1, 2, 2) \) to \( L_1 \).
The vector \( \overrightarrow{AP} = (1 + t - 1, -1 - t - 2, 2 + 2t - 2) = (t, -3 - t, 2t) \).
For \( AP \) to be perpendicular to the line \( L_1 \), \( \overrightarrow{AP} \cdot \text{direction of } L_1 = 0 \).
Direction of \( L_1 = (1, -1, 2) \). Thus:
\[
(t, -3 - t, 2t) \cdot (1, -1, 2) = 0
\]
\[
t(1) + (-3 - t)(-1) + 2t(2) = 0
\]
\[
t + 3 + t + 4t = 0 \Rightarrow 6t + 3 = 0 \Rightarrow t = -\frac{1}{2}.
\]
Hence, \( P \) has coordinates:
\[
P(1 + t, -1 - t, 2 + 2t) = \left( \frac{1}{2}, -\frac{1}{2}, 1 \right).
\]
Step 4: Equation of line \( L_2 \).
Let parameter \( \lambda \) correspond to line \( L_2 \):
\[
(x, y, z) = (-1 + \lambda, 1 - \lambda, -2 + \lambda)
\]
Direction ratios = \( (1, -1, 1) \).
Step 5: Intersection of \( L_1 \) and \( L_2 \).
For intersection, their coordinates must be equal:
\[
1 + t = -1 + \lambda, \quad -1 - t = 1 - \lambda, \quad 2 + 2t = -2 + \lambda
\]
From the first equation:
\[
\lambda = t + 2.
\]
From the second equation:
\[
-1 - t = 1 - (t + 2) \Rightarrow -1 - t = -1 - t \text{ (satisfied)}.
\]
From the third equation:
\[
2 + 2t = -2 + \lambda = -2 + (t + 2) \Rightarrow 2 + 2t = t \Rightarrow t = -2.
\]
Then \( \lambda = t + 2 = 0. \)
Hence, intersection point \( Q \) is found by putting \( t = -2 \) in \( L_1 \):
\[
Q(1 - 2, -1 + 2, 2 - 4) = (-1, 1, -2).
\]
Step 6: Find \( PQ \).
\( P\left(\frac{1}{2}, -\frac{1}{2}, 1\right) \), \( Q(-1, 1, -2) \).
\[
PQ^2 = \left(\frac{1}{2} + 1\right)^2 + \left(-\frac{1}{2} - 1\right)^2 + (1 + 2)^2
\]
\[
PQ^2 = \left(\frac{3}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 + 3^2 = \frac{9}{4} + \frac{9}{4} + 9 = \frac{9 + 9 + 36}{4} = \frac{54}{4} = \frac{27}{2}.
\]
Hence,
\[
2(PQ)^2 = 2 \times \frac{27}{2} = 27.
\]
Final Answer:
\[
\boxed{27}
\]