Let \( L_1 : \frac{x - 1}{3} = \frac{y - 1}{-1} = \frac{z + 1}{0} \) and
\( L_2 : \frac{x - 2}{2} = \frac{y}{0} = \frac{z + 4}{\alpha} \), where \( \alpha \in \mathbb{R} \), be two lines which intersect at the point \( B \).
If \( P \) is the foot of the perpendicular from the point \( A(1, 1, -1) \) on \( L_2 \), then the value of \( 26 \alpha (PB)^2 \) is: