Step 1: The parametric equations of the lines \( L_1 \) and \( L_2 \) are given, and the line \( L_3 \) passes through their point of intersection and is parallel to \( \overrightarrow{a} + \overrightarrow{b} \).
Step 2: To find the point of intersection, we need to solve the system of equations given by the parametric equations of \( L_1 \) and \( L_2 \). After solving this, we obtain the coordinates of the intersection point.
Step 3: Since \( L_3 \) is parallel to \( \overrightarrow{a} + \overrightarrow{b} \), we use this direction vector and the intersection point to identify the correct coordinates that satisfy the condition. Thus, the correct answer is (A).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: