If \( y = x - x^2 \), then the rate of change of \( y^2 \) with respect to \( x^2 \) at \( x = 2 \) is:
Step 1: Let’s define the functions
Step 2: Differentiate using the chain rule
Using the chain rule: \[ \frac{d(y^2)}{d(x^2)} = \frac{d(y^2)}{dx} \cdot \frac{dx}{d(x^2)} \] First: \[ \frac{d(y^2)}{dx} = 2y \cdot \frac{dy}{dx} \] and: \[ \frac{dx}{d(x^2)} = \frac{1}{2x} \] So: \[ \frac{d(y^2)}{d(x^2)} = \frac{2y \cdot \frac{dy}{dx}}{2x} = \frac{y \cdot \frac{dy}{dx}}{x} \]
Step 3: Evaluate at \( x = 2 \)
Given: \[ y = x - x^2 = 2 - 4 = -2 \] \[ \frac{dy}{dx} = \frac{d}{dx}(x - x^2) = 1 - 2x = 1 - 4 = -3 \] Now plug in: \[ \frac{d(y^2)}{d(x^2)} = \frac{(-2) \cdot (-3)}{2} = \frac{6}{2} = 3 \]
\( \boxed{3} \)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $