Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0 \), \( x + 2y - 31 = 0 \), and \( 9x - 2y - 19 = 0 \).
Let the point \( (h, k) \) be the image of the centroid of \( \triangle ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to:
Step 1: The equations of the lines form a triangle, and we need to find the coordinates of the centroid of the triangle. To do this, solve the system of linear equations to find the vertices \( A \), \( B \), and \( C \) of the triangle.
Step 2: The centroid of a triangle is the average of the coordinates of its vertices. After determining the coordinates of the vertices, calculate the centroid using the formula: \[ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \]
Step 3: Next, find the image of the centroid under the given line transformation. The image of the centroid \( G \) is the point \( (h, k) \).
Step 4: Finally, calculate \( h^2 + k^2 + hk \) using the obtained values of \( h \) and \( k \). Thus, the correct answer is (4).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to