Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0 \), \( x + 2y - 31 = 0 \), and \( 9x - 2y - 19 = 0 \).
Let the point \( (h, k) \) be the image of the centroid of \( \triangle ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to:
Step 1: The equations of the lines form a triangle, and we need to find the coordinates of the centroid of the triangle. To do this, solve the system of linear equations to find the vertices \( A \), \( B \), and \( C \) of the triangle.
Step 2: The centroid of a triangle is the average of the coordinates of its vertices. After determining the coordinates of the vertices, calculate the centroid using the formula: \[ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \]
Step 3: Next, find the image of the centroid under the given line transformation. The image of the centroid \( G \) is the point \( (h, k) \).
Step 4: Finally, calculate \( h^2 + k^2 + hk \) using the obtained values of \( h \) and \( k \). Thus, the correct answer is (4).
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
