Step 1: Direction ratios of the given line
The direction ratios of the line:
\[ \frac{3x - 11}{2} = \frac{3y - 11}{1} = \frac{3z - 19}{2} \]
are:
\[ \vec{d} = \langle 2, 1, 2 \rangle \]
Step 2: Representing point \( B \)
Let point \( B \) on the given line be:
\[ B = (1 + \lambda, 2 + \lambda, 3 + 2\lambda), \]
where \(\lambda\) is the parameter.
Step 3: Direction ratios of line \( AB \)
Point \( A = \left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right) \). The direction ratios of \( AB \) are:
\[ \text{D.R. of } AB = \left\langle \frac{3\lambda - 8}{3}, \frac{3\lambda - 5}{3}, \frac{6\lambda - 10}{3} \right\rangle \]
Step 4: Parallel condition
Since \( AB \) lies along the direction vector \(\vec{d} = \langle 2, 1, 2 \rangle\), we have:
\[ \frac{\frac{3\lambda - 8}{3}}{2} = \frac{\frac{3\lambda - 5}{3}}{1} = \frac{\frac{6\lambda - 10}{3}}{2} \]
Simplify the first ratio:
\[ \frac{3\lambda - 8}{3 \cdot 2} = \frac{3\lambda - 5}{3} \]
Cross-multiply:
\[ 3\lambda - 8 = 6\lambda - 10 \]
Solve for \(\lambda\):
\[ 3\lambda = 2 \implies \lambda = \frac{2}{3} \]
Step 5: Find \( B \)
Substitute \(\lambda = \frac{2}{3}\) into \( B = (1 + \lambda, 2 + \lambda, 3 + 2\lambda) \):
\[ B = \left(1 + \frac{2}{3}, 2 + \frac{2}{3}, 3 + 2 \cdot \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{8}{3}, \frac{13}{3}\right) \]
Step 6: Find distance \( AB \)
The distance \( AB \) is given by:
\[ AB = \sqrt{\left(\frac{11}{3} - \frac{5}{3}\right)^2 + \left(\frac{11}{3} - \frac{8}{3}\right)^2 + \left(\frac{19}{3} - \frac{13}{3}\right)^2} \]
Simplify each term:
\[ AB = \sqrt{\left(\frac{6}{3}\right)^2 + \left(\frac{3}{3}\right)^2 + \left(\frac{6}{3}\right)^2} \]
\[ AB = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} \]
Thus:
\[ AB = 3 \]
\(Option (1) : \; 3\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: