The given line is:
\( L: \frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} \)
The point \( P = \left( \frac{15}{7}, \frac{32}{7}, 7 \right) \).
Let \( Q \) be the point on the line with parametric coordinates:
\( Q = \left( \lambda + \frac{15}{7}, 4\lambda + \frac{32}{7}, 7\lambda + 7 \right) \)
Using the equation:
\( \frac{\lambda + \frac{15}{7} + 1}{3} = \frac{4\lambda + \frac{32}{7} + 3}{5} = \frac{7\lambda + 7 + 5}{7} \)
Equating terms:
\( 7\lambda + 22 = 21\lambda + 36 \)
\( \Rightarrow \lambda = -1 \)
Substituting \( \lambda = -1 \):
\( Q = \left( \frac{8}{7}, 4, 0 \right) \)
The distance between points \( P \) and \( Q \) is:
\( PQ = \sqrt{\left( \frac{15}{7} - \frac{8}{7} \right)^2 + \left( \frac{32}{7} - 4 \right)^2 + (7 - 0)^2} \)
\( PQ = \sqrt{1^2 + \left( \frac{4}{7} \right)^2 + 49} \)
\( PQ = \sqrt{1 + \frac{16}{49} + 49} = \sqrt{\frac{65}{49} + 49} \)
\( PQ = \sqrt{\frac{2466}{49}} = \sqrt{66} \)
\( \Rightarrow PQ^2 = 66 \)