Step 1: Simplifying the given complex number.
\[
z = \frac{i}{2} - \frac{2}{i}
\]
Rewriting the second term:
\[
\frac{2}{i} = \frac{2 \times (-i)}{i \times (-i)} = -2i
\]
Thus,
\[
z = \frac{i}{2} - 2i = -\frac{4i}{2} + \frac{i}{2} = -\frac{3i}{2}
\]
Step 2: Finding the argument.
The given complex number \( z = -\frac{3i}{2} \) is purely imaginary and negative, meaning it lies on the negative imaginary axis.
The argument of a purely imaginary number \( bi \) is given by:
\[
\theta = \frac{\pi}{2} \quad {if } b>0, \quad {or} \quad -\frac{\pi}{2} { if } b<0.
\]
Since \( z \) is negative imaginary,
\[
{Arg}(z) = \frac{\pi}{2}
\]
Thus, the correct answer is (D) \( \frac{\pi}{2} \).