Given the inequality: \[ -6 < n^2 - 10n + 19 < 6 \]
Split the inequality into two parts:
This simplifies to:
Factorize:
\[ (n - 5)^2 > 0 \]
The solution is \( n \in \mathbb{Z} \setminus \{5\} \) (all integers except 5). Call this result (i).
Find the roots of the equation:
\[ n^2 - 10n + 13 = 0 \]
The roots are:
\[ n = 5 \pm \sqrt{3} \]
Approximating the roots:
\[ 5 - \sqrt{3} \approx 2 \quad \text{and} \quad 5 + \sqrt{3} \approx 8 \]
Thus, \( 2 < n < 8 \). For integer values, \( n \in \{2, 3, 4, 5, 6, 7, 8\} \). Call this result (ii).
From (i) and (ii):
\( n \in \{2, 3, 4, 5, 6, 8\} \).
The number of values of \( n \) is:
\[ \boxed{6} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: