(32)5
\(\frac{32!}{27!}\)
\(^{32}C_{27}\)
\(^{32}P_{27}\)
The correct answer is (B) : \(\frac{32!}{27!}\)
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.