We are given the set \(S = \{1, 2, 3, 4, 5, 6\}\). The number of elements in \(S\) is:
\[ n(S) = 6. \]
The power set \(P(S)\) contains all subsets of \(S\), including the empty set, and has:
\[ |P(S)| = 2^6 = 64 \text{ elements.} \]
We need to count the one-one functions \(f : S \to P(S)\) such that \(f(n) \subset f(m)\) for \(n < m\).
\(f(6) = S\) (1 option).
\(f(5) =\) any 5-element subset of \(S\) (6 options).
\(f(4) =\) any 4-element subset of \(f(5)\) (5 options).
\(f(3) =\) any 3-element subset of \(f(4)\) (4 options).
\(f(2) =\) any 2-element subset of \(f(3)\) (3 options).
\(f(1) =\) any 1-element subset of \(f(2)\) or the empty subset (3 options).
Total functions:
\[ 1 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 3 = 1080. \]
\(f(6) =\) any 5-element subset of \(S\) (6 options).
\(f(5) =\) any 4-element subset of \(f(6)\) (5 options).
\(f(4) =\) any 3-element subset of \(f(5)\) (4 options).
\(f(3) =\) any 2-element subset of \(f(4)\) (3 options).
\(f(2) =\) any 1-element subset of \(f(3)\) (2 options).
\(f(1) =\) the empty subset (1 option).
Total functions:
\[ 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720. \]
\(f(6) = S\) (1 option).
\(f(5) =\) any 4-element subset of \(S\) (15 options).
\(f(4) =\) any 3-element subset of \(f(5)\) (4 options).
\(f(3) =\) any 2-element subset of \(f(4)\) (3 options).
\(f(2) =\) any 1-element subset of \(f(3)\) (2 options).
\(f(1) =\) the empty subset (1 option).
Total functions:
\[ 1 \cdot 15 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 360. \]
Similarly, other configurations of the subsets give 360 functions each.
Add the functions from all cases:
\[ 1080 + 720 + 360 + 360 + 360 + 360 = 3240. \]
The total number of such functions is:
\[ \boxed{3240}. \]