Since \( f(x) = -8(x + 5)^2 \), we know that \( (x + 5)^2 \) is always non-negative, and so \( f(x) \leq 0 \) for all values of \( x \).
Therefore, the function maps to values in the range \( (-\infty, 0] \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.