The area of the region bounded by the curves $y_1(x) = x^4 - 2x^2$ and $y_2(x) = 2x^2$, $x \in \mathbb{R}$, is
Consider the following system of linear equations: \[ \begin{cases} x + y + 5z = 3, \\ x + 2y + mz = 5, \\ x + 2y + 4z = k. \end{cases} \]
The system is consistent if
The correct statement regarding the determinants (Det) of matrices R, S and T is
The average value of function \( f(x) = \sqrt{9 - x^2} \) on \([-3, 3]\), rounded off to TWO decimal places, is ............
The median of Y in the following data is ............. \[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Serial number} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline Y & 22 & 12 & 10 & 14 & 16 & 20 \\ \hline \end{array} \]
The solution to the integral \( \int_0^1 2y\sqrt{1 + y^2} \, dy \), rounded off to TWO decimal places, is ............
Let $f : [-1,3] \to \mathbb{R}$ be a continuous function such that $f$ is differentiable on $(-1,3)$, $|f'(x)| \le \dfrac{3}{2}$ for all $x \in (-1,3)$, $f(-1) = 1$ and $f(3) = 7$. Then $f(1)$ equals .................
Find the rank of the matrix: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix} \] Rank = ?
For real constants $a$ and $b$, let \[ M = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ a & b \end{bmatrix} \] be an orthogonal matrix. Then which of the following statements is/are always TRUE?
Let the sequence $\{x_n\}_{n \ge 1}$ be given by $x_n = \sin \dfrac{n\pi}{6}$, $n = 1, 2, \ldots$. Then which of the following statements is/are TRUE?
Let $M$ be an $n \times n$ non-zero skew symmetric matrix. Then the matrix $(I_n - M)(I_n + M)^{-1}$ is always
Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation. If $T(1,1,0) = (2,0,0,0)$, $T(1,0,1) = (2,4,0,0)$, and $T(0,1,1) = (0,0,2,0)$, then $T(1,1,1)$ equals
Let $\{a_n\}_{n \ge 1}$ be a sequence of real numbers such that $a_1 = 1, a_2 = 7$, and $a_{n+1} = \dfrac{a_n + a_{n-1}}{2}$, $n \ge 2$. Assuming that $\lim_{n \to \infty} a_n$ exists, the value of $\lim_{n \to \infty} a_n$ is
Consider the following system of linear equations: \[ \begin{cases} ax + 2y + z = 0 \\ y + 5z = 1 \\ by - 5z = -1 \end{cases} \]
Which one of the following statements is TRUE?