Step 1: Compute \( a \).
\[
a = \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + 3 + \cdots + (n-1)) = \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n(n-1)}{2} = \frac{1}{2}.
\]
Step 2: Compute \( b \).
\[
b = \lim_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \right).
\]
This is a Riemann sum approximation of the integral
\[
b = \int_1^2 \frac{1}{x} \, dx = \ln 2.
\]
Step 3: Compare values.
\[
a = \frac{1}{2} = 0.5, b = \ln 2 \approx 0.693.
\]
Hence \( a < b. \)
Final Answer: \[ \boxed{a < b.} \]