Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = x^2(2 - y) - y^3 + 3y^2 + 9y$, where $(x, y) \in \mathbb{R}^2$. Which of the following is/are saddle point(s) of $f$?
Step 1: Find the critical points.
Compute partial derivatives:
\[
f_x = 2x(2 - y), f_y = -x^2 - 3y^2 + 6y + 9.
\]
Set both to zero:
From $f_x = 0 $\Rightarrow$ x = 0$ or $y = 2$.
Case 1: $x = 0$
Then $f_y = -3y^2 + 6y + 9 = 0 $\Rightarrow$ y^2 - 2y - 3 = 0 $\Rightarrow$ y = 3, -1.$
Thus, points $(0,3)$ and $(0,-1)$.
Case 2: $y = 2$
Then $f_y = -x^2 - 3(2)^2 + 6(2) + 9 = -x^2 + 9 = 0 $\Rightarrow$ x = \pm 3.$
Thus, points $(3,2)$ and $(-3,2)$.
Step 2: Compute second partial derivatives.
\[
f_{xx} = 2(2 - y), f_{yy} = -6y + 6, f_{xy} = -2x.
\]
Step 3: Use second derivative test.
Determinant $D = f_{xx} f_{yy} - (f_{xy})^2$.
At $(0, -1)$:
$f_{xx} = 6, \ f_{yy} = 12, \ f_{xy} = 0 $\Rightarrow$ D = 72 > 0$, and $f_{xx} > 0$ → Local minimum.
At $(0, 3)$:
$f_{xx} = -2, \ f_{yy} = -12, \ f_{xy} = 0 $\Rightarrow$ D = 24 > 0$, and $f_{xx} < 0$ → Local maximum.
At $(3, 2)$ and $(-3, 2)$:
$f_{xx} = 0, \ f_{yy} = -6, \ f_{xy} = -6$ → $D = -36 < 0$, indicating saddle points.
Step 4: Conclusion.
\[
\boxed{(0, -1) \text{ and } (0, 3) \text{ are saddle points.}}
\]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: