For real constants $a$ and $b$, let \[ M = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ a & b \end{bmatrix} \] be an orthogonal matrix. Then which of the following statements is/are always TRUE?
Step 1: Orthogonality condition.
For $M$ to be orthogonal, $M^T M = I_2$. That is, \[ \begin{bmatrix} \dfrac{1}{\sqrt{2}} & a \\ \dfrac{1}{\sqrt{2}} & b \end{bmatrix} \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ a & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]
Step 2: Compute the product.
\[ M^T M = \begin{bmatrix} \dfrac{1}{2} + a^2 & \dfrac{1}{2} + ab \\ \\ \dfrac{1}{2} + ab & \dfrac{1}{2} + b^2 \end{bmatrix}. \]
Step 3: Apply orthogonality equations.
From $M^T M = I_2$, we get: \[ \dfrac{1}{2} + a^2 = 1 \text{and} \dfrac{1}{2} + ab = 0. \] Thus: \[ a^2 = \dfrac{1}{2}, ab = -\dfrac{1}{2}. \] This implies $b = -a$. Hence, $a + b = 0$.
Step 4: Conclusion.
\[ \boxed{a + b = 0 \text{ and } ab = -\dfrac{1}{2}}. \]
Find the rank of the matrix: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix} \] Rank = ?