Find the rank of the matrix: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix} \] Rank = ?
Step 1: Row operations.
Subtract $R_1$ from $R_2$, $R_3$, and $R_4$: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 4 & 5 & 3 \\ 1 & 5 & 7 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & 4 & 2 \\ 0 & 4 & 6 & 3 \end{bmatrix}. \]
Step 2: Eliminate further.
Subtract $3R_2$ from $R_3$, and $4R_2$ from $R_4$: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & -2 & -1 \end{bmatrix}. \]
Step 3: Simplify.
$R_4 - R_3 $$\Rightarrow$$ 0. \text{Hence, 3 nonzero rows} $$\Rightarrow$$ \text{rank} = 3$. \[ \boxed{3.} \]
For real constants $a$ and $b$, let \[ M = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ a & b \end{bmatrix} \] be an orthogonal matrix. Then which of the following statements is/are always TRUE?