Let $M$ be an $n \times n$ non-zero skew symmetric matrix. Then the matrix $(I_n - M)(I_n + M)^{-1}$ is always
Step 1: Recall properties of skew-symmetric matrices.
If $M$ is skew-symmetric, then $M^T = -M$.
Step 2: Compute transpose of given matrix.
Let $A = (I - M)(I + M)^{-1}$. Then
\[
A^T = [(I + M)^{-1}]^T (I - M)^T = (I + M^T)^{-1}(I - M^T) = (I - M)^{-1}(I + M).
\]
Step 3: Show orthogonality.
\[
AA^T = (I - M)(I + M)^{-1}(I - M)^{-1}(I + M) = I.
\]
Hence $A$ is orthogonal.
Step 4: Conclusion.
\[
\boxed{(I_n - M)(I_n + M)^{-1} \text{ is orthogonal.}}
\]
Find the rank of the matrix: \[ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix} \] Rank = ?