Let $M$ be an $n \times n$ non-zero skew symmetric matrix. Then the matrix $(I_n - M)(I_n + M)^{-1}$ is always
Step 1: Recall properties of skew-symmetric matrices.
If $M$ is skew-symmetric, then $M^T = -M$.
Step 2: Compute transpose of given matrix.
Let $A = (I - M)(I + M)^{-1}$. Then
\[
A^T = [(I + M)^{-1}]^T (I - M)^T = (I + M^T)^{-1}(I - M^T) = (I - M)^{-1}(I + M).
\]
Step 3: Show orthogonality.
\[
AA^T = (I - M)(I + M)^{-1}(I - M)^{-1}(I + M) = I.
\]
Hence $A$ is orthogonal.
Step 4: Conclusion.
\[
\boxed{(I_n - M)(I_n + M)^{-1} \text{ is orthogonal.}}
\]