>
Mathematics
List of top Mathematics Questions
Eight coins are thrown simultaneously. What is the probability of getting atleast
$3$
heads?
Mathematics
Conditional Probability
Each diagonal element of a skew-symmetric matrix is
Mathematics
Matrices
$\frac{dy}{dx} = \frac{4x + 2y + 1}{ x -2y + 3}$
is a differential equation of the type
Mathematics
Differential equations
Domain of
$cos^{-1}\, [x]$
is
Mathematics
Inverse Trigonometric Functions
$ \displaystyle\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin \, x}{\cos \, x}$
is equal to
Mathematics
limits and derivatives
$\displaystyle\lim_{x\to \frac{\pi}{2}} \frac{\cos \, x}{ x - \frac{\pi}{2}}$
equals:
Mathematics
limits and derivatives
$\displaystyle\lim_{x \to \infty} \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)}$
is equal to:
Mathematics
limits and derivatives
$\displaystyle \lim_{x\to\infty}\left(\frac{x^{100}}{e^{x}}+\left(cos \frac{2}{x}\right)^{x^2}\right) = $
Mathematics
limits and derivatives
$\displaystyle\lim_{x \to 0}\left[\frac{sin\left[x-3\right]}{\left[x-3\right]}\right]$
, where [ . ] denotes greatest integer function is
Mathematics
limits and derivatives
$\displaystyle \lim_{x \to 1}$
$\left[\left(\frac{4x}{x^{2}-x^{-1}}-\frac{1-3x+x^{2}}{1-x^{3}}\right)^{-1}+3\left(\frac{x^{4}-1}{x^{3}-x^{-1}}\right)\right]$
is
Mathematics
limits and derivatives
$\displaystyle \lim_{n \to \infty}$
$\left(\frac{1}{n^{2}}+\frac{3}{n^{2}}+\frac{5}{n^{2}}+.....+\frac{2n+1}{n^{2}}\right)$
is equal to
Mathematics
limits and derivatives
$\displaystyle \lim_{x \to 0}$
$\frac{1-cos\,mx}{1-cos\,nx}=$
Mathematics
limits and derivatives
$\displaystyle \lim_{x \to 0}$
$\left(cos\,x+sin\,x\right)^{\frac{1}{x}}$
equals
Mathematics
limits and derivatives
$\displaystyle\int_{1/2}^{2}|\log_{10}\,x|dx= $
Mathematics
integral
$\displaystyle \lim_{h \to 0}$
$\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}=$
Mathematics
limits and derivatives
Differential coefficient of
$\sqrt{sec\sqrt{x}}$
is
Mathematics
Continuity and differentiability
Differential coefficient of
$tan^{-1} \frac{2x}{1-x^{2}}$
with respect to
$sin^{-1} \frac{2x}{1+x^{2}}$
will be
Mathematics
Continuity and differentiability
Differential co-efficient of
$\log_{10} x $
w.r.t.
$log_x 10$
is
Mathematics
limits and derivatives
Derivative of the function
$f(x) = log_5(log_7x)$
,
$x > 7$
is
Mathematics
Continuity and differentiability
Derivative of
$\sec^{-1} \left( \frac{1}{2x^2 + 1 } \right)$
w.r.t.
$\sqrt{ 1 + 3x} $
at
$x = - \frac{1}{3}$
is
Mathematics
limits and derivatives
Derivative of the function
$f(x) = 7x^{-3} $
is
Mathematics
limits and derivatives
$\Delta =\begin{vmatrix} sin^2x & cos^2x & 1 \\[0.3em] cos^2x &sin^2x & 1 \\[0.3em] -10 & 12& 2 \end{vmatrix}$
Mathematics
Matrices
$\frac{d}{dx}\left\{cosec^{-1}\left(\frac{1+x^{2}}{2x}\right)\right\}$
is equal to
Mathematics
Continuity and differentiability
$\frac{d}{dx}\left(tan^{-1}\left(\frac{\sqrt{x}-\sqrt{a}}{1+\sqrt{xa}}\right)\right)$
,
$x$
,
$a > 0$
, is
Mathematics
Continuity and differentiability
If $ lim_{ x \to 0 } [ 1 + x \, log \, (1 + b^2) ]^{\frac{1}{x}} = 2 b sin^2 \, \theta, b > 0 \, and \, \theta \in ( - \pi , \pi),
$ then the value of $
\theta $ is
Mathematics
limits and derivatives
Prev
1
...
741
742
743
744
745
...
752
Next