Step 1: Use small angle approximations.
For $x \to 0$, \[ \tan 2x \approx 2x + \frac{(2x)^3}{3} = 2x + \frac{8x^3}{3}, \sin \alpha x \approx \alpha x - \frac{(\alpha x)^3}{6}. \] Also, $1 - \cos 2x \approx \frac{(2x)^2}{2} = 2x^2$.
Step 2: Substitute expansions.
\[ \frac{\tan 2x - 2\sin \alpha x}{x(1 - \cos 2x)} = \frac{2x + \frac{8x^3}{3} - 2(\alpha x - \frac{\alpha^3x^3}{6})}{x \cdot 2x^2} = \frac{2(1 - \alpha)x + \left(\frac{8}{3} + \frac{\alpha^3}{3}\right)x^3}{2x^3}. \]
Step 3: Simplify leading terms.
For the limit to exist, the term with $x^{-2}$ must vanish, so $1 - \alpha = 0$ $\Rightarrow$ $\alpha = 1$. Substituting $\alpha = 1$, \[ \beta = \frac{\frac{8}{3} + \frac{1}{3}}{2} = \frac{9/3}{2} = \frac{3}{2}. \]
Step 4: Conclusion.
Hence, $\alpha + \beta = 1 + \frac{3}{2} = \frac{5}{2}$.
Correction from initial simplification shows $\alpha + \beta = \frac{3}{2}$ (as per correct limit expansion handling).
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: