The correct statement regarding the determinants (Det) of matrices R, S and T is

$$R = \begin{vmatrix} 3 & 2 & 4 \\ 4 & 5 & 7 \\ 1 & 3 & 8 \end{vmatrix}$$
We use the cofactor expansion along the first row:
$$\text{Det}(R) = 3 \begin{vmatrix} 5 & 7 \\ 3 & 8 \end{vmatrix} - 2 \begin{vmatrix} 4 & 7 \\ 1 & 8 \end{vmatrix} + 4 \begin{vmatrix} 4 & 5 \\ 1 & 3 \end{vmatrix}$$
$$\text{Det}(R) = 3((5)(8) - (7)(3)) - 2((4)(8) - (7)(1)) + 4((4)(3) - (5)(1))$$
$$\text{Det}(R) = 3(40 - 21) - 2(32 - 7) + 4(12 - 5)$$
$$\text{Det}(R) = 3(19) - 2(25) + 4(7)$$
$$\text{Det}(R) = 57 - 50 + 28$$
$$\text{Det}(R) = 7 + 28 = \mathbf{35}$$
$$S = \begin{vmatrix} 2 & 3 & 4 \\ 5 & 4 & 7 \\ 3 & 1 & 8 \end{vmatrix}$$
We use the cofactor expansion along the first row:
$$\text{Det}(S) = 2 \begin{vmatrix} 4 & 7 \\ 1 & 8 \end{vmatrix} - 3 \begin{vmatrix} 5 & 7 \\ 3 & 8 \end{vmatrix} + 4 \begin{vmatrix} 5 & 4 \\ 3 & 1 \end{vmatrix}$$
$$\text{Det}(S) = 2((4)(8) - (7)(1)) - 3((5)(8) - (7)(3)) + 4((5)(1) - (4)(3))$$
$$\text{Det}(S) = 2(32 - 7) - 3(40 - 21) + 4(5 - 12)$$
$$\text{Det}(S) = 2(25) - 3(19) + 4(-7)$$
$$\text{Det}(S) = 50 - 57 - 28$$
$$\text{Det}(S) = -7 - 28 = \mathbf{-35}$$
$$T = \begin{vmatrix} 3 & 4 & 1 \\ 2 & 5 & 3 \\ 4 & 7 & 8 \end{vmatrix}$$
We use the cofactor expansion along the first row:
$$\text{Det}(T) = 3 \begin{vmatrix} 5 & 3 \\ 7 & 8 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 4 & 8 \end{vmatrix} + 1 \begin{vmatrix} 2 & 5 \\ 4 & 7 \end{vmatrix}$$
$$\text{Det}(T) = 3((5)(8) - (3)(7)) - 4((2)(8) - (3)(4)) + 1((2)(7) - (5)(4))$$
$$\text{Det}(T) = 3(40 - 21) - 4(16 - 12) + 1(14 - 20)$$
$$\text{Det}(T) = 3(19) - 4(4) + 1(-6)$$
$$\text{Det}(T) = 57 - 16 - 6$$
$$\text{Det}(T) = 41 - 6 = \mathbf{35}$$
Comparing the results:
$\text{Det}(R) = 35$
$\text{Det}(S) = -35$
$\text{Det}(T) = 35$
Therefore, $\text{Det}(R) = \text{Det}(T)$ and both are not equal to $\text{Det}(S)$.
$$\mathbf{\text{Det}(R) = \text{Det}(T) \neq \text{Det}(S)}$$
This corresponds to Option 2.
One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown in the figure. Total change in entropy (in J K\(^{-1}\)) during this process is ............... 
The number of chiral carbon centers in the following molecule is ............... 
A tube fitted with a semipermeable membrane is dipped into 0.001 M NaCl solution at 300 K as shown in the figure. Assume density of the solvent and solution are the same. At equilibrium, the height of the liquid column \( h \) (in cm) is ......... 
An electron at rest is accelerated through 10 kV potential. The de Broglie wavelength (in A) of the electron is .............