>
Mathematics
List of top Mathematics Questions
The probability distribution of a discrete r.v. \( X \) is:
\[ \begin{array}{c|ccccc} X = x & 0 & 1 & 2 & 3 & 4 \\ P(X = x) & k & 2k & 4k & 2k & k \\ \end{array} \]
Then, the value of \( P(X \leq 2) \) is:
MHT CET - 2020
MHT CET
Mathematics
Probability
If the angle between the lines whose direction ratios are \( 4, -3, 5 \) and \( 3, 4, k \) is \( \frac{\pi}{3} \), then \( k = \)
MHT CET - 2020
MHT CET
Mathematics
Vector Algebra
If the symbolic form of the switching circuit is \( \sim p \vee ( p \wedge \sim q) \vee q \), then the current flows through the circuit only if:
MHT CET - 2020
MHT CET
Mathematics
Mathematical Logic
The rate of decay of mass of a certain substance at time \( t \) is proportional to the mass at that instant. The time during which the original mass of \( m_0 \) gram will be left to \( m_1 \) gram is
\[ k \text{ is constant of proportionality} \]
MHT CET - 2020
MHT CET
Mathematics
Differential equations
If \( \frac{x}{x-y} = \log \left( \frac{a}{x-y} \right) \), then \( \frac{dy}{dx} = \)
MHT CET - 2020
MHT CET
Mathematics
Differentiation
The equation of the line passing through the points \( (3, 4, -7) \) and \( (6, -1, 1) \) is:
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
If the error involved in making a certain measurement is continuous random variable \( X \) with probability density function \( f(x) = k (4 - x^2) \) for \( -2 \leq x \leq 2 \), and \( f(x) = 0 \) otherwise, then
\[ P(|-1<X<1|) \]
MHT CET - 2020
MHT CET
Mathematics
Probability
If \( | \vec{a} \, \vec{b} \, \vec{c} | = 3 \), then the volume of the parallelepiped with \( 2\vec{a} + \vec{b} \), \( 2\vec{b} + \vec{c} \), \( 2\vec{c} + \vec{a} \) as coterminous edges is:
MHT CET - 2020
MHT CET
Mathematics
Vector Algebra
Evaluate the integral:
\[ \int_{-1}^{1} \left[ \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right] dx \]
MHT CET - 2020
MHT CET
Mathematics
Some Properties of Definite Integrals
The co-ordinates of the foot of the perpendicular from the point \( (0, 2, 3) \) on the line
\[ \frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3} \]
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
Evaluate the integral:
\[ \int \left[ \frac{1 - \log x}{1 + (\log x)^2} \right]^2 dx \]
MHT CET - 2020
MHT CET
Mathematics
Integration
The equation of a circle passing through the origin and making x-intercept 3 and y-intercept -5 is:
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
Which of the following have the same value:
(a)
\( \sin 120^\circ \)
(b)
\( \cos 930^\circ \)
(c)
\( \tan 840^\circ \)
(d)
\( \cot(-1110^\circ) \)
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
Evaluate the sum of the series:
\[ \frac{1^2}{2} + \frac{1^2 + 2^2}{3} + \frac{1^2 + 2^2 + 3^2}{4} + \frac{1^2 + 2^2 + 3^2 + 4^2}{5} + \cdots \quad \text{upto 8 terms} \]
MHT CET - 2020
MHT CET
Mathematics
Sequence and series
If \(A(3,2,-1)\) and \(B(1,4,3)\), then the equation of the plane which bisects the segment \(AB\) perpendicularly is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
ABCD is a parallelogram. \(P\) is the midpoint of \(AB\). If \(R\) is the point of intersection of \(AC\) and \(DP\), then \(R\) divides \(AC\) internally in the ratio
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
Two dice are thrown together. The probability that the sum of the numbers is divisible by 2 or 3 is
MHT CET - 2020
MHT CET
Mathematics
Probability
Evaluate the integral:
\[ \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x} \]
MHT CET - 2020
MHT CET
Mathematics
Integration
\(y = mx + \dfrac{2}{m}\) is the general solution of
MHT CET - 2020
MHT CET
Mathematics
Differential equations
In a triangle \(ABC\) with usual notations, \[ \frac{\cos A - \cos C}{a - c} + \frac{\cos B}{b} = \]
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
The approximate value of \( \log_{10}99 \) is (Given \( \log_{10}e = 0.4343 \))
MHT CET - 2020
MHT CET
Mathematics
Logarithms
The maximum value of \(Z = 10x + 25y\) subject to \[ 0 \le x \le 3,\; 0 \le y \le 3,\; x + y \le 5,\; x \ge 0,\; y \ge 0 \] is
MHT CET - 2020
MHT CET
Mathematics
Linear Programming
If the function \[ f(x)= \begin{cases} \dfrac{\log 10 + \log(0.1+2x)}{2x}, & x \neq 0 \\ k, & x=0 \end{cases} \] is continuous at \(x=0\), then \(k+2=\)
MHT CET - 2020
MHT CET
Mathematics
Relations and Functions
The equation of a line passing through the point of intersection of the lines \[ x + 2y + 8 = 0 \quad \text{and} \quad 3x - y + 4 = 0 \] and having x– and y–intercepts zero is
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
If the displacement of a particle at time \(t\) is given by \[ s = 3t^2 - 12t + 14, \] then the displacement of the particle when its velocity becomes zero is
MHT CET - 2020
MHT CET
Mathematics
Differential equations
Prev
1
...
740
741
742
743
744
...
1168
Next