Consider the following system of linear equations:
\[ \begin{cases} x + y + 5z = 3, \\ x + 2y + mz = 5, \\ x + 2y + 4z = k. \end{cases} \]
The system is consistent if
Step 1: Finding consistency condition:
Write the augmented matrix: $$\left[\begin{array}{ccc|c} 1 & 1 & 5 & 3 \\ 1 & 2 & m & 5 \\ 1 & 2 & 4 & k \end{array}\right]$$
Perform row operations:
$R_2 - R_1$: $$\left[\begin{array}{ccc|c} 1 & 1 & 5 & 3 \\ 0 & 1 & m-5 & 2 \\ 1 & 2 & 4 & k \end{array}\right]$$
$R_3 - R_1$: $$\left[\begin{array}{ccc|c} 1 & 1 & 5 & 3 \\ 0 & 1 & m-5 & 2 \\ 0 & 1 & -1 & k-3 \end{array}\right]$$
$R_3 - R_2$: $$\left[\begin{array}{ccc|c} 1 & 1 & 5 & 3 \\ 0 & 1 & m-5 & 2 \\ 0 & 0 & -1-(m-5) & k-3-2 \end{array}\right]$$
$$= \left[\begin{array}{ccc|c} 1 & 1 & 5 & 3 \\ 0 & 1 & m-5 & 2 \\ 0 & 0 & 4-m & k-5 \end{array}\right]$$
Step 2: Consistency analysis:
For the system to be consistent, we need to avoid the situation where $0 = \text{non-zero}$ in the last row.
Case 1: If $4 - m \neq 0$ (i.e., $m \neq 4$):
The third row gives: $(4-m)z = k-5$
This has a solution for any value of $k$. The system is consistent for all $k$.
Case 2: If $4 - m = 0$ (i.e., $m = 4$):
The third row becomes: $0 = k - 5$
This is consistent only if $k = 5$.
Step 3: Conclusion:
The system is consistent if:
Step 4: Evaluating options:
(A) $m \neq 4$: System is consistent for all $k$. TRUE
(B) $k \neq 5$: Not sufficient alone; depends on $m$. FALSE
(C) $m = 4$: Only consistent if $k = 5$. NOT ALWAYS TRUE
(D) $k = 5$: System is consistent for all $m$ (including $m = 4$). TRUE
Answer: (A) and (D) are correct