Step 1: Take logarithm.
Let \(y = x^x\). Taking natural logarithm on both sides:
\[
\ln y = x \ln x
\]
Step 2: Evaluate limit.
As \(x \to 0^+\), \(\ln x \to -\infty\), so \(x \ln x \to 0\).
\[
\lim_{x \to 0^+} \ln y = 0 \implies \ln y = 0
\]
Hence \(y = e^0 = 1.\)
Step 3: Conclusion.
\[
\lim_{x \to 0^+} x^x = 1
\]
