Step 1: Take logarithm.
Let \(y = x^x\). Taking natural logarithm on both sides:
\[
\ln y = x \ln x
\]
Step 2: Evaluate limit.
As \(x \to 0^+\), \(\ln x \to -\infty\), so \(x \ln x \to 0\).
\[
\lim_{x \to 0^+} \ln y = 0 \implies \ln y = 0
\]
Hence \(y = e^0 = 1.\)
Step 3: Conclusion.
\[
\lim_{x \to 0^+} x^x = 1
\]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to

At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)