>
Mathematics
List of top Mathematics Questions
$p \rightarrow \sim q$
can also be written as
KCET - 2012
KCET
Mathematics
mathematical reasoning
If the product of
$n$
positive real numbers is one, then their sum is
JKCET - 2012
JKCET
Mathematics
Sequence and series
$\frac {\sin 70^\circ\, +\cos 40^\circ} {\cos 70^\circ + \sin 40^\circ}$
=
KCET - 2012
KCET
Mathematics
Trigonometric Equations
If
$(4)^{\log_9 3} + (9)^{\log_2 4} = (10)^{\log_x 83}$
, then X is equal to
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Probability
If
$\omega$
is a cube root of unity, then the value of determinant
$\begin{vmatrix}1+\omega&\omega^{2}&\omega \\ \omega^{2} + \omega &-\omega &\omega^{2} \\ 1+\omega^{2} &\omega &\omega^{2} \end{vmatrix}$
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Determinants
$ y =\tan^{-1} \left( \frac{1}{1+x+x^{2}} \right) + \tan ^{-1} \left( \frac{1}{x^{2}+3x+3} \right) + \tan ^{-1} \left( \frac{1}{x^{2}+5x+7} \right) + ......+ $
upto
$n$
terms, then
$ \frac{dy}{dx} $
at
$x = 0$
and
$n = 1$
is equal to
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Statistics
If
$y = \sin^{2} \left(\tan^{-1} \sqrt{\frac{1-x^{2}}{1+x^{2}}}\right), $
then
$\frac{dy}{dx}$
=
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Statistics
If
$\alpha, \beta , \gamma$
are the roots of the equation
$x^3 - 3x^2 + 2x - 1 = 0$
then the value of
$[(1 - \alpha) (1 -\beta )(1 - \gamma)]$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Complex Numbers and Quadratic Equations
The value of
$\tan 10^{\circ}\, \tan 20^{\circ} \, \tan 30^{\circ} \, \tan 40^{\circ} \, \tan 50^{\circ}\, \tan 60^{\circ} \tan 70^{\circ} \, \tan 80^{\circ} =$
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Trigonometric Functions
Equation of chord of the circle
$x^2 + y^2 + 4x - 6y - 9 = 0 $
bisected at (0, 1) is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Conic sections
The multiplicative inverse of
$ \frac{3 + 4i}{4 - 5 i}$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Complex numbers
If
$\frac{2}{9!} + \frac{2}{3! \,7!}+\frac{1}{5! \,5!} =\frac{2^{a}}{b!}$
where
$a,b \in \, N$
then theordered pair
$(a, b)$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
permutations and combinations
$\displaystyle\lim_{x\to0} \left(\frac{1+5x^{2}}{1+3x^{2}}\right)^{\frac{1}{x^{2}}} = $
COMEDK UGET - 2012
COMEDK UGET
Mathematics
limits and derivatives
Identify the false statement
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Relations and functions
In the group
$G = \{1, 5, 7, 11\}$
under
$\otimes_{12}$
the value of
$7 \otimes_{12} 11^{-1}$
is equal to
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Relations and functions
Which of the following is a subgroup of the group
$G = \{1, 2, 3, 4, 5, 6\}$
under
$\otimes_7$
?
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Relations and functions
The parametric equation of a parabola is
$x = t^2 + 1, y = 2t + 1$
. The cartesian equation of its directrix is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Parabola
The sum of
$n$
terms of the series
$ \frac{3}{{{1}^{2}}{{.2}^{2}}}+\frac{5}{{{2}^{2}}{{.3}^{2}}}+\frac{7}{{{3}^{2}}{{.4}^{2}}}+..... $
is equal to
JKCET - 2012
JKCET
Mathematics
Sequence and series
The probability that atleast one of the events
$A$
and
$B$
occurs is
$ 0.5 $
. If
$A$
and
$B$
occur simultaneously with probability
$ 0.2, $
then
$ P({{A}^{c}})+P({{B}^{c}}) $
is equal to
JKCET - 2012
JKCET
Mathematics
Probability
Let $ f(x)=\frac{k}{1+{{x}^{2}}},\,-\infty < x < \infty
$ be the probability density of a random variable. Then, $
k$ equals to
JKCET - 2012
JKCET
Mathematics
Probability
If $(-3, 2)$ lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, which is concentric with the circle $x^2 + y^2 + 6x + 8y - 5 = 0,$ then c is equal to
VITEEE - 2012
VITEEE
Mathematics
circle
The line
$x=2 y$
intersects the ellipse
$\frac{x^{2}}{4}+y^{2}=1$
at the points
$P$
and
$Q$
. The equation of the circle with
$P Q$
as diameter is
WBJEE - 2012
WBJEE
Mathematics
Ellipse
If
$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$
, then the value of
$x^{9}+y^{9}+z^{9}-\frac{1}{x^{9} y^{9} z^{9}}$
is equal to
WBJEE - 2012
WBJEE
Mathematics
Trigonometric Equations
There are $100$ students in a class. In an examination, $50$ of them failed in Mathematics, $45$ failed in Physics, $40$ failed in Biology and $32$ failed in exactly two of the three subjects. Only one student passed in all the subjects. Then the number of students failing in all the three subjects.
WBJEE - 2012
WBJEE
Mathematics
Sets
The number of integer values of
$m$
, for which the
$x$
-coordinate of the point of intersection of the lines
$3x + 4y = 9$
and
$y = mx + 1$
is also an integer, is
WBJEE - 2012
WBJEE
Mathematics
Straight lines
Prev
1
...
690
691
692
693
694
...
984
Next