A function \( f \) is defined on \([-3, 3]\) as \( f(x) = \begin{cases} \min\{|x|, 2-x^2\}, & -2 \le x \le 2 \\ |x|, & 2 < |x| \le 3 \end{cases} \), where \( [x] \) denotes the greatest integer \( \le x \). The number of points, where \( f \) is not differentiable in \((-3, 3)\) is ________ .