Given:
\[
f(x) =
\begin{cases}
\min\{|x|,\,2-x^2\}, & -2 \le x \le 2 \\
|x|, & 2<|x| \le 3
\end{cases}
\]
We first determine where \(|x| = 2-x^2\).
\[
|x| = 2-x^2
\]
For \(x \ge 0\):
\[
x = 2 - x^2 \Rightarrow x^2 + x - 2 = 0 \Rightarrow x = 1
\]
For \(x<0\):
\[
-x = 2 - x^2 \Rightarrow x^2 - x - 2 = 0 \Rightarrow x = -1
\]
Hence,
\[
f(x) =
\begin{cases}
-x, & -3<x<-2 \\
2 - x^2, & -2 \le x \le -1 \\
|x|, & -1<x<1 \\
2 - x^2, & 1 \le x \le 2 \\
x, & 2<x<3
\end{cases}
\]
Points of possible non-differentiability:
\[
x = -2, -1, 0, 1, 2
\]
Thus, total points of non-differentiability = 5.
\[
\boxed{5}
\]