Let
\[
I=\int_{-\pi/4}^{\pi/4}\frac{dx}{(1+e^{x\cos x})(\sin^4x+\cos^4x)}
\]
Step 1: Use symmetry of limits
For any function $f(x)$,
\[
\int_{-a}^{a} f(x)\,dx=\int_{0}^{a}[f(x)+f(-x)]\,dx
\]
Define
\[
f(x)=\frac{1}{(1+e^{x\cos x})(\sin^4x+\cos^4x)}
\]
Using $\cos(-x)=\cos x$ and $\sin(-x)=-\sin x$:
\[
f(-x)=\frac{1}{(1+e^{-x\cos x})(\sin^4x+\cos^4x)}
\]
Step 2: Add $f(x)$ and $f(-x)$
\[
f(x)+f(-x)
=\frac{1}{\sin^4x+\cos^4x}
\left(\frac{1}{1+e^{x\cos x}}+\frac{1}{1+e^{-x\cos x}}\right)
\]
Let $u=e^{x\cos x}$:
\[
\frac{1}{1+u}+\frac{1}{1+1/u}
=\frac{1}{1+u}+\frac{u}{1+u}=1
\]
Hence,
\[
f(x)+f(-x)=\frac{1}{\sin^4x+\cos^4x}
\]
So,
\[
I=\int_{0}^{\pi/4}\frac{dx}{\sin^4x+\cos^4x}
\]
Step 3: Simplify the denominator
\[
\sin^4x+\cos^4x
=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x
=1-\tfrac12\sin^22x
\]
Thus,
\[
I=\int_{0}^{\pi/4}\frac{dx}{1-\tfrac12\sin^22x}
\]
Let $u=2x$, $du=2dx$:
\[
I=\frac12\int_{0}^{\pi/2}\frac{du}{1-\tfrac12\sin^2u}
=\frac12\int_{0}^{\pi/2}\frac{2\,du}{2-\sin^2u}
\]
Step 4: Use standard integral
\[
\int_{0}^{\pi/2}\frac{du}{a+b\sin^2u}
=\frac{\pi}{2\sqrt{a(a+b)}}
\]
Here, $a=2$, $b=-1$:
\[
I=\frac{\pi}{2\sqrt{2}}
\]
\[
\boxed{\text{Correct Answer: (A) }\dfrac{\pi}{2\sqrt{2}}}
\]