Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)and B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\),Verify that (AB)-1=B-1A-1.
Prove: \(cos^{-1} \frac45 + cos^{-1} \frac {12}{13} = cos^{-1} \frac {33}{65} \)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&-1&2\\0&2&-3\\3&-2&4\end{bmatrix}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
Prove: \(sin^{-1} \frac {8}{17} + sin^{-1} \frac 35=tan^{-1} \frac {77}{36}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}-1&5\\-3&2\end{bmatrix}\)
Find the inverse of each of the matrices (if it exists). \(\begin{bmatrix}1&0&0\\3&3&0\\5&2&-1\end{bmatrix}\)
Find adjoint of each of the matrices. \(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
For the matrices A and B, verify that (AB)′=B'A' whereI. A=\(\begin{bmatrix}1\\-4\\3\end{bmatrix}\),B=\(\begin{bmatrix}-1&2&1\end{bmatrix}\)
II. A= \(\begin{bmatrix}0\\1\\2\end{bmatrix}\),B=\(\begin{bmatrix}1&5&7\end{bmatrix}\)
Find the value of \(tan^{-1}(tan \frac{7\pi}{6})\).
Find the value of \(cos^{-1}(cos\frac {13\pi}{6})\)
Using Cofactors of elements of second row, evaluate △=\(\begin{vmatrix}5&3&8\\2&0&1\\1&2&3\end{vmatrix}\)
Consider f: R+\(\to\) [−5,∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with \(f^{-1}(y) = \frac {(\sqrt {y+6})-1}{3}\)
Consider f: {1, 2, 3} \(\to\) {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1= f.
Which of the following is correct?
Choose the correct answer. Let A be a square matrix of order 3×3,then IkAI is equal to
By using properties of determinants, show that: \(\begin{vmatrix}1&x&x^2\\x^2&1&x\\x&x^2&1\end{vmatrix}\)=(1-x3)2
Consider f: R+\(\to\)[4,∞) given by f(x) = x2+4. Show that f is invertible with the inverse f−1 of given f by \(f^{-1}(y)= \sqrt {y-4}\) , where R+is the set of all non-negative real numbers.
By using properties of determinants, show that: \(\begin{vmatrix}-a^2&ab&ac\\ba&-b^2&bc\\ca&cb&-c^2\end{vmatrix}\)=4a2b2c2
By using properties of determinants ,show that: \(\begin{vmatrix}0&a&-b\\-a&0&-c\\b&c&0\end{vmatrix}\)=0
Consider f: R\(\to\)R given by f(x) = 4x+3. Show that f is invertible. Find the inverse of f.
Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}1&bc&a(b+c)\\1&ca&b(c+a)\\1&ab&c(a+b)\end{vmatrix}\)=0
Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}2&7&65\\3&8&75\\5&9&86\end{vmatrix}\)=0
Show that the Signum Function f: R\(\to\)R, given by
is neither one-one nor onto.