
We use the Cayley-Hamilton theorem, which states that every square matrix satisfies its own characteristic equation.
The characteristic equation is given by $\det(A - \lambda I) = 0$. 
$(1-\lambda)(4-\lambda) - (2)(-1) = 0$
$4 - 5\lambda + \lambda^2 + 2 = 0$
$\lambda^2 - 5\lambda + 6 = 0$.
According to the Cayley-Hamilton theorem, the matrix A satisfies this equation:
$A^2 - 5A + 6I = 0$.
To find an expression for $A^{-1}$, we multiply the entire equation by $A^{-1}$ (assuming A is non-singular, which it is since $\det(A) = 4 - (-2) = 6 \neq 0$).
$A^{-1}(A^2 - 5A + 6I) = A^{-1}(0)$
$A^{-1}A^2 - 5A^{-1}A + 6A^{-1}I = 0$
$A - 5I + 6A^{-1} = 0$.
Now, solve for $A^{-1}$:
$6A^{-1} = 5I - A$
$A^{-1} = \frac{5}{6}I - \frac{1}{6}A$.
We are given that $A^{-1} = \alpha I + \beta A$. Comparing the two expressions, we get:
$\alpha = \frac{5}{6}$
$\beta = -\frac{1}{6}$
We need to calculate the value of $4(\alpha - \beta)$.
$4(\alpha - \beta) = 4\left(\frac{5}{6} - \left(-\frac{1}{6}\right)\right)$
$= 4\left(\frac{5}{6} + \frac{1}{6}\right) = 4\left(\frac{6}{6}\right) = 4(1) = 4$.
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
and $B=\operatorname{adj}(\operatorname{adj}A)$, if $|B|=81$, find the value of $\alpha^2$ (where $\alpha\in\mathbb{R}$).
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 


