Question:

Let C be the set of all complex numbers. Let $S_1 = \{z \in C : |z-3-2i|^2 = 8\}$, $S_2 = \{z \in C : \text{Re}(z) \ge 5\}$ and $S_3 = \{z \in C : |z - \bar{z}| \ge 8\}$. Then the number of elements in $S_1 \cap S_2 \cap S_3$ is equal to :

Show Hint

For intersection problems in the complex plane, always convert conditions into Cartesian form and compare ranges. Boundary analysis often reveals whether solutions are finite, infinite, or empty.
Updated On: Jan 6, 2026
  • 0
  • 1
  • 2
  • Infinite
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let $z = x + iy$, where $x,y \in \mathbb{R}$. Step 1: Interpretation of each set Set $S_1$: \[ |z - (3+2i)|^2 = 8 \] \[ |(x-3) + i(y-2)|^2 = 8 \Rightarrow (x-3)^2 + (y-2)^2 = 8 \] This represents a circle with: \[ \text{Center } (3,2), \quad \text{Radius } \sqrt{8} = 2\sqrt{2} \] Set $S_2$: \[ \text{Re}(z) \ge 5 \Rightarrow x \ge 5 \] This is the closed half-plane to the right of the vertical line $x=5$. Set $S_3$: \[ |z - \bar{z}| \ge 8 \] \[ |(x+iy)-(x-iy)| = |2iy| = 2|y| \ge 8 \Rightarrow |y| \ge 4 \] This corresponds to the region: \[ y \ge 4 \quad \text{or} \quad y \le -4 \] Step 2: Geometric feasibility For the circle $(x-3)^2 + (y-2)^2 = 8$: \[ x \in [3-2\sqrt{2},\, 3+2\sqrt{2}] \approx [0.17,\, 5.83] \] \[ y \in [2-2\sqrt{2},\, 2+2\sqrt{2}] \approx [-0.83,\, 4.83] \] Since the circle does not extend below $y=-4$, only the region $y \ge 4$ from $S_3$ is relevant. Step 3: Boundary checking If $x>5$ and $y>4$, then: \[ (x-3)^2>4,\quad (y-2)^2>4 \Rightarrow (x-3)^2+(y-2)^2>8 \] So no such point lies on the circle. Hence, possible solutions must lie on the boundaries: \[ x=5 \quad \text{or} \quad y=4 \] Case 1: $x=5$ \[ (5-3)^2 + (y-2)^2 = 8 \Rightarrow 4 + (y-2)^2 = 8 \Rightarrow (y-2)^2 = 4 \] \[ y = 4 \text{ or } 0 \] Point $(5,4)$ satisfies: \[ x \ge 5,\quad |y| \ge 4 \] ✔ Valid Point $(5,0)$ fails $|y| \ge 4$ ✘ Invalid Case 2: $y=4$ \[ (x-3)^2 + (4-2)^2 = 8 \Rightarrow (x-3)^2 = 4 \Rightarrow x = 5 \text{ or } 1 \] Point $(5,4)$ already counted ✔ Valid Point $(1,4)$ fails $x \ge 5$ ✘ Invalid Step 4: Conclusion Only one complex number satisfies all three conditions: \[ z = 5 + 4i \] \[ \boxed{\text{Number of elements } = 1} \]
Was this answer helpful?
0
0