Let $z = x + iy$, where $x,y \in \mathbb{R}$.
Step 1: Interpretation of each set
Set $S_1$:
\[
|z - (3+2i)|^2 = 8
\]
\[
|(x-3) + i(y-2)|^2 = 8
\Rightarrow (x-3)^2 + (y-2)^2 = 8
\]
This represents a circle with:
\[
\text{Center } (3,2), \quad \text{Radius } \sqrt{8} = 2\sqrt{2}
\]
Set $S_2$:
\[
\text{Re}(z) \ge 5 \Rightarrow x \ge 5
\]
This is the closed half-plane to the right of the vertical line $x=5$.
Set $S_3$:
\[
|z - \bar{z}| \ge 8
\]
\[
|(x+iy)-(x-iy)| = |2iy| = 2|y| \ge 8
\Rightarrow |y| \ge 4
\]
This corresponds to the region:
\[
y \ge 4 \quad \text{or} \quad y \le -4
\]
Step 2: Geometric feasibility
For the circle $(x-3)^2 + (y-2)^2 = 8$:
\[
x \in [3-2\sqrt{2},\, 3+2\sqrt{2}] \approx [0.17,\, 5.83]
\]
\[
y \in [2-2\sqrt{2},\, 2+2\sqrt{2}] \approx [-0.83,\, 4.83]
\]
Since the circle does not extend below $y=-4$, only the region $y \ge 4$ from $S_3$ is relevant.
Step 3: Boundary checking
If $x>5$ and $y>4$, then:
\[
(x-3)^2>4,\quad (y-2)^2>4
\Rightarrow (x-3)^2+(y-2)^2>8
\]
So no such point lies on the circle.
Hence, possible solutions must lie on the boundaries:
\[
x=5 \quad \text{or} \quad y=4
\]
Case 1: $x=5$
\[
(5-3)^2 + (y-2)^2 = 8
\Rightarrow 4 + (y-2)^2 = 8
\Rightarrow (y-2)^2 = 4
\]
\[
y = 4 \text{ or } 0
\]
Point $(5,4)$ satisfies:
\[
x \ge 5,\quad |y| \ge 4
\]
✔ Valid
Point $(5,0)$ fails $|y| \ge 4$
✘ Invalid
Case 2: $y=4$
\[
(x-3)^2 + (4-2)^2 = 8
\Rightarrow (x-3)^2 = 4
\Rightarrow x = 5 \text{ or } 1
\]
Point $(5,4)$ already counted
✔ Valid
Point $(1,4)$ fails $x \ge 5$
✘ Invalid
Step 4: Conclusion
Only one complex number satisfies all three conditions:
\[
z = 5 + 4i
\]
\[
\boxed{\text{Number of elements } = 1}
\]