Step 1: Rewrite the function Let $\{x\}=x-[x]$ be the fractional part of $x$. Then, \[ f(x)=\min\{\{x\},\,1-\{x\}\}. \] Thus, on each interval $[n,n+1)$, the function forms a symmetric ``V-shape'' with: - minimum value $0$ at integers, - maximum value $\frac{1}{2}$ at the midpoint.
Step 2: Analyze continuity Possible discontinuities occur only at integers due to $[x]$.
At $x=1$: \[ \lim_{x\to1^-}f(x)=0,\quad f(1)=0,\quad \lim_{x\to1^+}f(x)=0 \]
At $x=2$: \[ \lim_{x\to2^-}f(x)=0,\quad f(2)=0,\quad \lim_{x\to2^+}f(x)=0 \]
Hence, $f$ is continuous at all points of $[0,3]$. \[ P=\varnothing \quad\Rightarrow\quad |P|=0 \] Step 3: Analyze differentiability The function is not differentiable at points where the minimum switches or where sharp corners occur.
Midpoints of intervals: \[ x=\tfrac{1}{2},\ \tfrac{3}{2},\ \tfrac{5}{2} \]
Integers (change in slope): \[ x=1,\ 2 \]
At these points, left-hand and right-hand derivatives are unequal. \[ Q=\left\{\tfrac{1}{2},\,1,\,\tfrac{3}{2},\,2,\,\tfrac{5}{2}\right\} \quad\Rightarrow\quad |Q|=5 \] Step 4: Final answer \[ |P|+|Q|=0+5=5 \] Answer: \(\boxed{5}\)


