Question:

Let the domain of the function $f(x) = \log_4(\log_5(\log_3(18x-x^2-77)))$ be $(a, b)$. Then the value of the integral $\int_a^b \frac{\sin^3 x}{\sin^3 x + \sin^3(a+b-x)} dx$ is equal to _________.

Show Hint

Recognize the standard integral form $\int_a^b \frac{f(x)}{f(x)+f(a+b-x)} dx$. By applying the King's property ($\int_a^b g(x)dx = \int_a^b g(a+b-x)dx$) and adding the original and transformed integrals, the result is always $\frac{b-a}{2}$. In this case, $\frac{10-8}{2} = 1$.
Updated On: Jan 6, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 1

Solution and Explanation

Step 1: Find the domain of the function For the given function to be defined, the argument of each logarithm must be positive. \[ \log_4(\cdot) \text{ defined } \Rightarrow \log_5(\log_3(18x-x^2-77))>0 \] \[ \Rightarrow \log_3(18x-x^2-77)>1 \] \[ \Rightarrow 18x-x^2-77>3 \] \[ \Rightarrow 18x-x^2-80>0 \] \[ \Rightarrow x^2-18x+80<0 \] Factoring: \[ (x-8)(x-10)<0 \] Hence, \[ 8<x<10 \] So, \[ (a,b)=(8,10) \] Step 2: Evaluate the integral Let \[ I=\int_8^{10}\frac{\sin^3 x}{\sin^3 x+\sin^3(18-x)}\,dx \] Using the property of definite integrals: \[ \int_a^b f(x)\,dx=\int_a^b f(a+b-x)\,dx \] \[ I=\int_8^{10}\frac{\sin^3(18-x)}{\sin^3(18-x)+\sin^3 x}\,dx \] Step 3: Add both expressions \[ 2I=\int_8^{10}\left( \frac{\sin^3 x}{\sin^3 x+\sin^3(18-x)} + \frac{\sin^3(18-x)}{\sin^3(18-x)+\sin^3 x} \right)dx \] \[ 2I=\int_8^{10}1\,dx \] \[ 2I=10-8=2 \] \[ I=1 \] Answer: \(\boxed{1}\)
Was this answer helpful?
0
0