Step 1: Find the domain of the function
For the given function to be defined, the argument of each logarithm must be positive.
\[
\log_4(\cdot) \text{ defined } \Rightarrow \log_5(\log_3(18x-x^2-77))>0
\]
\[
\Rightarrow \log_3(18x-x^2-77)>1
\]
\[
\Rightarrow 18x-x^2-77>3
\]
\[
\Rightarrow 18x-x^2-80>0
\]
\[
\Rightarrow x^2-18x+80<0
\]
Factoring:
\[
(x-8)(x-10)<0
\]
Hence,
\[
8<x<10
\]
So,
\[
(a,b)=(8,10)
\]
Step 2: Evaluate the integral
Let
\[
I=\int_8^{10}\frac{\sin^3 x}{\sin^3 x+\sin^3(18-x)}\,dx
\]
Using the property of definite integrals:
\[
\int_a^b f(x)\,dx=\int_a^b f(a+b-x)\,dx
\]
\[
I=\int_8^{10}\frac{\sin^3(18-x)}{\sin^3(18-x)+\sin^3 x}\,dx
\]
Step 3: Add both expressions
\[
2I=\int_8^{10}\left(
\frac{\sin^3 x}{\sin^3 x+\sin^3(18-x)}
+
\frac{\sin^3(18-x)}{\sin^3(18-x)+\sin^3 x}
\right)dx
\]
\[
2I=\int_8^{10}1\,dx
\]
\[
2I=10-8=2
\]
\[
I=1
\]
Answer: \(\boxed{1}\)