For the function $f(x)$ to be continuous at $x=0$, the following condition must hold:
\[
\lim_{x\to 0^-} f(x) = f(0) = \lim_{x\to 0^+} f(x).
\]
Given,
\[
f(0)=b.
\]
Step 1: Right-Hand Limit (RHL)
\[
\lim_{x\to 0^+} e^{\frac{\cot 4x}{\cot 2x}}
= e^{\lim_{x\to 0^+} \frac{\cot 4x}{\cot 2x}}
\]
Rewrite using $\cot x = \frac{1}{\tan x}$:
\[
\frac{\cot 4x}{\cot 2x} = \frac{\tan 2x}{\tan 4x}.
\]
Using the standard limit $\displaystyle \lim_{t\to 0} \frac{\tan t}{t} = 1$,
\[
\lim_{x\to 0} \frac{\tan 2x}{\tan 4x}
= \frac{2x}{4x} = \frac{1}{2}.
\]
Hence,
\[
\text{RHL} = e^{1/2} = \sqrt{e}.
\]
Step 2: Left-Hand Limit (LHL)
\[
\lim_{x\to 0^-} (1+|\sin x|)^{\frac{3a}{|\sin x|}}.
\]
As $x \to 0^-$, $|\sin x| \to 0^+$.
Let $y = |\sin x|$.
\[
\text{LHL} = \lim_{y\to 0^+} (1+y)^{\frac{3a}{y}}
= \left(\lim_{y\to 0^+} (1+y)^{1/y}\right)^{3a}.
\]
Using the standard limit $\displaystyle \lim_{y\to 0} (1+y)^{1/y} = e$,
\[
\text{LHL} = e^{3a}.
\]
Step 3: Apply Continuity Condition
\[
\text{LHL} = \text{RHL} = f(0)
\]
\[
e^{3a} = \sqrt{e}.
\]
Comparing powers of $e$:
\[
3a = \frac{1}{2} \quad \Rightarrow \quad a = \frac{1}{6}.
\]
Also,
\[
b = \sqrt{e}.
\]
Step 4: Compute Required Expression
\[
6a + b^2 = 6\left(\frac{1}{6}\right) + (\sqrt{e})^2
= 1 + e.
\]
\[
\boxed{6a + b^2 = 1 + e}
\]