If three terms \(A,B,C\) are in arithmetic progression, then
\[
2B=A+C
\]
Applying this condition:
\[
2\log_3(2^x-5)=\log_3 2+\log_3\!\left(2^x-\frac{7}{2}\right)
\]
Using logarithmic properties:
\[
2\log_3 a=\log_3 a^2,\qquad \log_3 p+\log_3 q=\log_3(pq)
\]
\[
\log_3\bigl((2^x-5)^2\bigr)=\log_3\!\left(2\left(2^x-\frac{7}{2}\right)\right)
\]
Since \(\log_3\) is a one-to-one function, equate the arguments:
\[
(2^x-5)^2=2(2^x)-7
\]
Let \(y=2^x\). Then,
\[
(y-5)^2=2y-7
\]
\[
y^2-10y+25=2y-7
\]
\[
y^2-12y+32=0
\]
Factoring:
\[
(y-4)(y-8)=0
\]
\[
\Rightarrow y=4 \quad \text{or} \quad y=8
\]
Substituting back:
\[
2^x=4 \Rightarrow x=2
\]
\[
2^x=8 \Rightarrow x=3
\]
Step 2: Check domain of logarithms
All logarithmic arguments must be positive:
\[
2^x-5>0 \Rightarrow 2^x>5
\]
\[
2^x-\frac{7}{2}>0 \Rightarrow 2^x>3.5
\]
Thus, the stricter condition is:
\[
2^x>5
\]
Checking values:
\[
x=2 \Rightarrow 2^2=4 \;(\text{invalid})
\]
\[
x=3 \Rightarrow 2^3=8 \;(\text{valid})
\]
Answer: \(\boxed{3}\)