>
Mathematics
List of top Mathematics Questions
The limit $ \lim_{x \to 0} \left( \frac{\tan x - x}{x} \right) \cdot \left( \sin \frac{1}{x} \right) $ is equal to
JKCET - 2024
JKCET
Mathematics
Limits
If a matrix $ A $ is symmetric as well as skew symmetric then $ A $ is
JKCET - 2024
JKCET
Mathematics
Matrices
The system of linear equations
$ x + y + z = 2, \quad 2x + y - 2 = 3, \quad 3x + 2y + kz = 4 \text{ has a unique solution if} $
JKCET - 2024
JKCET
Mathematics
Determinants
If $A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & \cos x & \sin x \\ 0 & -\sin x & \cos x \end{array}\right)$, then $\text{Adj}(A)^{-1}$
JKCET - 2024
JKCET
Mathematics
Matrices
For the positive integer $ n $,
$ C_1^{n} + C_2^{n} + C_3^{n} + ... + C_n^{n} \text{ is equal to} $
JKCET - 2024
JKCET
Mathematics
Binomial theorem
The term independent of $ x $ in the expansion of
$ \left( x - \frac{3}{x^2} \right)^{18} $
JKCET - 2024
JKCET
Mathematics
binomial expansion formula
If $a^2 + b^2 + c^2 = 0$ and $$\begin{vmatrix} b^2+c^2 & ab & ac \\ ab & c^2+a^2 & bc \\ ac & bc & a^2+b^2 \end{vmatrix}=ka^2b^2c^2$$ then k is equal to
JKCET - 2024
JKCET
Mathematics
Determinants
The value of $ n $, for which $ \frac{a^{n+1} + b^{n+1}}{a^n + b^n} $ is the A.M. between $ a $ and $ b $, is
JKCET - 2024
JKCET
Mathematics
Arithmetic Mean
"The maximum or the minimum of the objectives function occurs only at the corners points of the feasible region". This theorem is known as fundamental theorem of
JKCET - 2024
JKCET
Mathematics
Linear Programming Problem
The solution of the inequality $ \frac{1}{2x - 5} > 0 $ is
JKCET - 2024
JKCET
Mathematics
inequalities
If $ 2 < x < 3 $, then
JKCET - 2024
JKCET
Mathematics
inequalities
The conjugate complex number of
$ \frac{2 - i}{1 - 2i^2} $
JKCET - 2024
JKCET
Mathematics
Complex numbers
The value of $ \left( \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} \right)^6 + \left( \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \right)^6 $ is
JKCET - 2024
JKCET
Mathematics
Complex numbers
The maximum value of $ P = 8x + 3y $, subject to the constraints $ x + y \leq 6, x \geq 0, y \geq 0 $, is
JKCET - 2024
JKCET
Mathematics
Linear Programming Problem
Let $ R $ be a relation on set $ A $ such that $ R = R^{-1} $, then $ R $ is
JKCET - 2024
JKCET
Mathematics
Relations and functions
Let $ R $ be a relation on $ \mathbb{N} $ defined as $ x R y $ iff $ x + 2y = 8 $, the domain of $ R $ is
JKCET - 2024
JKCET
Mathematics
Relations and functions
If $ n(A) = 4 $ and $ n(B) = 2 $, then the number of surjections from A to B is:
JKCET - 2024
JKCET
Mathematics
Sets
Evaluate the limit:
$$ \lim_{n \to \infty} n^4 \left[ \sum_{k=0}^{\infty} \frac{1}{(n^2 + k)^{5/2}} \right]. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The line joining the points $ (2,2,2) $ and $ (6,6,6) $ meets the line
$$ \frac{x - 1}{3} = \frac{y - 2}{2} = \frac{z - 5}{-1} $$
at the point
KEAM - 2024
KEAM
Mathematics
Coordinate Geometry
If the tangent drawn at a point $P(t)$ on the hyperbola
$$ x^2 - y^2 = c^2 $$
cuts the X-axis at $T$ and the normal drawn at the same point $P$ cuts the Y-axis at $N$, then the equation of the locus of the midpoint of $TN$ is:
TS EAMCET - 2024
TS EAMCET
Mathematics
Geometry
The maximum interval in which the slopes of the tangents drawn to the curve
\[ y = x^4 + 5x^3 + 9x^2 + 6x + 2 \]
increase is:
TS EAMCET - 2024
TS EAMCET
Mathematics
Fundamental Theorem of Calculus
Let $ f : x \to y $ be a given function, then $ f^{-1} $ exists if
JKCET - 2024
JKCET
Mathematics
Relations and functions
Evaluate the limit:
$$ \lim_{x \to 1} \frac{x + x^2 + x^3 + \dots + x^n - n}{x - 1}. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Locus of Normals
If
$$ y = (1 + a + a^2 + \dots)e^{nx} $$
then the relative error in
$y$
is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Limits
If the extremities of the latus recta having positive ordinate of the ellipse
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b) $$
lie on the parabola
$$ x^2 + 2ay - 4 = 0, $$
then the points
$(a, b)$
lie on the curve:
TS EAMCET - 2024
TS EAMCET
Mathematics
Geometry
Prev
1
...
377
378
379
380
381
...
1168
Next