Solve the following L.P.P. by graphical method: Maximize: \[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]
The sum of the order and degree of the differential equation: \[ \frac{d^y}{dx^t} = c + \left( \frac{d^y}{dx^t} \right)^{\frac{3}{2}} \] is:
The equations \( 2x - 3y + 1 = 0 \) and \( 4x - 5y - 1 = 0 \) are the equations of two diameters of the circle \( S = x^2 + y^2 + 2gx + 2fy - 11 = 0 \) and \( R \) are the points of contact of the tangents drawn from the point \( P(-2, -2) \) to this circle. If \( C \) is the centre of the circle, \( S = 0 \) is the equation of the circle, then the area (in square units) of the quadrilateral \( PQCR \) is: