It is known that 20% of the students in a school have above 90% attendance and 80% of the students are irregular. Past year results show that 80% of students who have above 90% attendance and 20% of irregular students get “A” grade in their annual examination. At the end of a year, a student is chosen at random from the school and is found to have an “A” grade. What is the probability that the student is irregular?
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
\(\begin{vmatrix} a+b+2c & a & b \\[0.3em] c & b+c+2c & b \\[0.3em] c & a & c+a2b \end{vmatrix}\)