The value of the constant \( c \), so that \( P(x) = c\left(\dfrac{2}{3}\right)^x,\, x = 1,2,3,\ldots \) is the probability distribution function of a discrete random variable \( X \), is:
Show Hint
Use the sum of infinite geometric series: \( \sum_{n=1}^\infty ar^n = \dfrac{ar}{1 - r} \), valid for \( |r|<1 \).
Given the probability mass function:
\[
P(x) = c\left(\dfrac{2}{3}\right)^x, \quad x = 1,2,3,\ldots
\]
To find \( c \), use the condition that the total probability must sum to 1:
\[
\sum_{x=1}^{\infty} P(x) = 1 \Rightarrow c \sum_{x=1}^{\infty} \left(\dfrac{2}{3}\right)^x = 1
\]
This is a geometric series:
\[
\sum_{x=1}^{\infty} \left(\dfrac{2}{3}\right)^x = \dfrac{\dfrac{2}{3}}{1 - \dfrac{2}{3}} = \dfrac{2/3}{1/3} = 2
\]
Thus:
\[
c \cdot 2 = 1 \Rightarrow c = \dfrac{1}{2}
\]
% Final Answer
\[
\boxed{c = \dfrac{1}{2}}
\]