Let \( X \sim \text{Bin}(n=5, p) \)
Mean = \( np \), Variance = \( np(1 - p) \)
Difference:
\[
np - np(1 - p) = \dfrac{5}{9} \Rightarrow np[p] = \dfrac{5}{9}
\]
Since \( n = 5 \),
\[
5p^2 = \dfrac{5}{9} \Rightarrow p^2 = \dfrac{1}{9} \Rightarrow p = \dfrac{1}{3}
\]
Now, find \( P(X = 2) \) using binomial formula:
\[
P(X = 2) = \binom{5}{2} \left(\dfrac{1}{3}\right)^2 \left(\dfrac{2}{3}\right)^3
= 10 \cdot \dfrac{1}{9} \cdot \dfrac{8}{27}
= \dfrac{80}{243}
\]
% Final Answer
\[
\boxed{P(X = 2) = \dfrac{80}{243}}
\]