Given parabola:
\(4x^2 - 12x + 4y + 5 = 0 \Rightarrow x^2 - 3x + y + \frac{5}{4} = 0\)
Complete square:
\((x - \frac{3}{2})^2 - \frac{9}{4} + y + \frac{5}{4} = 0 \Rightarrow (x - \frac{3}{2})^2 + y - 1 = 0\)
So vertex = \(\left(\frac{3}{2}, 1\right)\), axis is vertical.
Standard form: \((x - h)^2 = 4a(y - k)\), comparing gives \(a = \frac{1}{4}\)
Focus = \(\left(\frac{3}{2}, 1 + \frac{1}{4}\right) = \left(\frac{3}{2}, \frac{5}{4}\right)\)
Directrix: \(y = 1 - \frac{1}{4} = \frac{3}{4}\)
So Z = \(\left(\frac{3}{2}, \frac{3}{4}\right)\)
Now, point dividing \(SZ\) in ratio 2:1:
Use section formula:
\[
\left(\frac{2x_2 + x_1}{3}, \frac{2y_2 + y_1}{3}\right)
= \left(\frac{2 \cdot \frac{3}{2} + \frac{3}{2}}{3}, \frac{2 \cdot \frac{3}{4} + \frac{5}{4}}{3}\right) = \left(\frac{6 + 3}{4.5}, \frac{6 + 5}{12}\right) = \left(\frac{3}{2}, \frac{13}{12}\right)
\]