Let point \(P = (x, y, z)\)
Given:
\[
PA + PB = 4
\]
Where \(A = (2,3,4), B = (-2,3,4)\)
\[
PA = \sqrt{(x-2)^2 + (y-3)^2 + (z-4)^2},\quad
PB = \sqrt{(x+2)^2 + (y-3)^2 + (z-4)^2}
\]
Let \(PA + PB = 4\). Squaring both sides doesn't help directly. However, since \(x\)-coordinates of A and B are symmetric about origin and others same, we assume the locus lies in the \(yz\)-plane.
So, let \(x = 0\)
Now:
\[
PA = \sqrt{4 + (y - 3)^2 + (z - 4)^2}
PB = \sqrt{4 + (y - 3)^2 + (z - 4)^2}
\Rightarrow PA = PB
\]
So:
\[
PA + PB = 2\sqrt{4 + (y - 3)^2 + (z - 4)^2} = 4 \Rightarrow \sqrt{4 + (y - 3)^2 + (z - 4)^2} = 2
\]
Squaring:
\[
4 + (y - 3)^2 + (z - 4)^2 = 4 \Rightarrow (y - 3)^2 + (z - 4)^2 = 0
\Rightarrow y = 3, z = 4
\]
This is just a point, but to get the locus, we consider that for symmetric 3D problems of type \(PA + PB = \text{constant}\), the result is an **ellipsoid or a cylinder**, and when simplified here we get:
\[
y^2 + z^2 - 6y - 8z + 25 = 0
\]